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J. Phys. A: Math. Gen. 19 (1986) 887-902. Printed in Great Britain 

Quantum anharmonic symmetrical oscillators using elliptic 
functions 

A Martin Sinchez and J Diaz Bejarano 
Departamento de Termodinimica, Facultad de Ciencias, Universidad de Extremadura, 
06071-Badajoz, Spain 

Received 17 April 1985 

Abstract. We study in the JWKB approximation the energy levels of the symmetric anhar- 
monic oscillators V ( x )  = Ax2 + Bx4 for different signs and values of A and E. Comparisons 
are made with published results for specific cases and with numerical calculations. We 
give an additional example of exact value, to add to the very rare catalogue of known 
examples. 

1. Introduction 

In a series of papers we have studied complete analytical solutions of different 
anharmonic oscillators. Diaz Bejarano et a1 (1982) have considered classical oscillators 
in potentials of the form V( x )  = AX’ + Bx4; the more difficult case of the asymmetrical 
potential V ( x )  = AX’ + Bx3 has been considered by Diaz Bejarano et a1 (1985). Finally 
we show the relation between the relativistic oscillators and the non-linear symmetrical 
oscillator (Diaz Bejarano and Martin Sinchez 1983). The intrinsic non-linear properties 
of the relativistic oscillator make a general study of the anharmonic symmetrical 
oscillator in quantum mechanics interesting. These oscillators are also important in 
chemistry and have many applications?. The case with A = f l  and B positive has 
been treated by many different methods (Bazley and Fox 1961, Reid 1965, Bender and 
Wu 1969, Laane 1970, Loeffel et al 1969, Pascual 1969, Biswas et a1 1971, Mathews 
and Eswaran 1972, Banerjee 1976, Hioe and Montroll 1975, Banerjee et a1 1978, Hioe 
et a1 1978, Radmore 1980, Mathews er a1 1981, Cizek and Vrscay 1982, Hirsbrunner 
1982, Femandez and Castro 1983, Femandez et a1 1983, Flessas 1983, Flessas et a1 
1983, Bhattacharya et a1 1984, Marziani 1984). 

2. Eigenvalues from the JWKB approximation for the anharmonic symmetrical 
oscillators 

For the calculation of the energy levels we use the Bohr-Sommerfeld rule modified 
by the JWKB method, in the lowest order (Galindo and Pascual 1978) i.e. 

p ( x )  dx = ( n  + f ) h .  (1) f 
Taking into consideration the symmetry of the problem and changing to the more 

? A  list of references (320) for previous work can be found, for example in Killingbeck (1977). More 
references can be found in Martin Sanchez (1983). 
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convenient t variable (Bradbury 1968) we transform (1) into 

4p /0J’4x2(r)dr=(n+i)h.  

We give in table 1 the corresponding classical periodic solutions for general 
coefficients A and B in the potential 

V( x )  = Ax2  + Bx4. 

In this table, m is the parameter of the elliptic functions and m1 is the complementary 
parameter (Abramowitz and Stegun 1972); xo is the maximum amplitude for the 
oscillations and xo is the maximum velocity. 

We study here the following cases: (a) A > 0, B 3> 0;  ( P )  A > 0, B < 0; ( Y) A < 0, 
B > 0. The type (8) A < 0, B < 0 has no bound energy levels. 

For the type CY there are various special cases. For m = 0, B = 0 we have the limit 
corresponding to the harmonic oscillator. The solutions cn and sd are the well known 
equivalent solutions cos and sin (Abramowitz and Stegun 1972). For m = i, A = 0 and 
we have the limit of the quartic oscillator, to be considered in § 5 .  A = B = 0 is the 
free particle and is not studied here. 

The energy levels for the type P must lie below the potential maximum; they are 
resonances because there is tunnelling through the barriers. 

For the type y when E = O  the four classical solutions (cn, sd, dn and nd) are 
equivalent and m = 1.  

Some aspects and formulae for the case with A = + 1 and B negative are also known 
(Biswas et al 1973, Drummond 1981). Numerical solutions for special values of A 
negative and B positive are given by Somorjai and Hornig (1962), Caswell (1979), 
Dias de Deus (1982) and Balsa er a1 (1983). From the enormous literature on the 
subject we do not know of any general discussions of the problem. In this paper we 
intend to make this general study. The results have been checked with results previously 
published (mentioned above) and/or with calculations made with numerical methods 
(Oset and Salcedo 1984). 

For the Hamiltonian 

H = ( P2/2p)  + A X 2 +  BX4 (3) 

p is the mass of the oscillator and P and X momentum and position. Diaz Bejarano 
e? a1 (1983) gave the classical solutions, needed for the application of the JWKB method, 
obtained from the applications of Newton’s law, i.e. with coefficients in the expression 
for the force. 

We also give in table 1 the classical total energy E of the particle (kinetic+ potential). 
The total energy of the particle is then, according to table 1,  for type CY 

E = Ax:+ Bxi = m,pw2x$ /2 .  (4) 

From (3) and ( 2 )  we obtain 

4px;wz  s n 2 w t  dn2wrd t=(n+$)h .  

The period of the cn w? is 4K/w, where K is the complete elliptic integral of the first 
kind (Abramowitz and Stegun 1972). The integral (5 )  and similar integrals for the 
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other types are tabulated in Byrd and Friedman (1954). After some simple algebra 
one obtains for the energy level n in the potential type a 

E,  = ( n  + 4) h o 3 m m I { 8 [ ( 2 m  - 1)E( K )  + m ,  K11-I ( 6 )  

where E ( K )  is the complete elliptic integral of the second kind. 
For initial conditions of type 11, the classical equations of motion for the same 

potential is given in table 1 and the total energy for these initial conditions can also 
be seen in this table. The J W K B  quantisation condition can now be applied, and after 
minor algebra the same value for E,  as before is obtained. This result is the expected 
one for equivalent solutions of the same potential. To be able to calculate the energy 
levels from (6) one needs a relation between w,  m, A and B that can be obtained from 
the values given in table 1. 

Similar formulae can be found for all the potentials. Then, making the same 
operations as indicated above we obtain for the potential type p ,  the energy 

E,, = ( n + ~ ) h w 3 m { 8 [ ( 1 + m ) E ( K ) - m l K ) 1 ) - ’  

but, in these cases, the energies given by the preceding formula are not energy levels; 
they are only resonances because a particle in the well of potential p can traverse 
the limiting barriers by tunnelling. We discuss this effect in the next section; there, 
we calculate also the resonance widths for the corresponding energy. 

The positive energy levels of potential y are the same as for case a, but the restriction 
on the parameter of elliptic function is now +< m < 1, because the A value must be 
in agreement with the values of w and E in table 1. For the calculations of the negative 
energy levels of type y it is necessary to calculate the tunnelling effect of the intermediate 
barrier between the two potential wells. This effect will be considered in the next section. 

When we calculate the negative energy levels we must check the connection with 
the positive ones. This will be made in the last section giving the numerical values for 
both positive and negative energy levels. 

We need only calculate the energy levels with A = 1 whatever B is, or with B = 1 
whatever A is, because we can use the scaling relations satisfied by the exact eigenvalues 

&(A,  B) = A’/*E,(  1, 

&(A, B) = B’ /3E, (AB-2 /3 ,  1) 

or the relation obtained with the two preceding 

A”’E,(l ,  BA-3 /2 )  = B’ /3E, (AB-2 /3 ,  1). 

3. Potential barriers 

In the previous calculations it has not been necessary to find the relations between the 
parameter of the elliptic functions and the turning points. Now, for the calculus of 
barrier penetration we calculate the solutions of the energy conservation equation 

V ( x )  = E. (7)  
The roots of this equation are the turning points. Another relation is given in table 1 
for the total energy. Comparing the two relations for the m value we have the equality 

m = a2/(a2+[a12) 

where a and a are the roots of (7) .  The other roots of this equation are -a  and a* 
taking into consideration the symmetry of the potential. The complementary parameter 
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is 

Similarly for the other potentials ( p  and y )  we obtain the following relations 
For type p 

m = a’/ b2,  m ,  = 1 - a’/ b’. 

For type y and negative energies (for positive energies it has the same relation as 
potential a) 

m = 1 - a’/ b’, m,  = a’/ b’. 

The roots of equation (7)  in both cases are a, -a,  b and -b. The similarity 
between the two types is evident and it will be used in the following. Another important 
property of the potential p and y is that V(x) in the type p is -V(x) in the type y 
and vice versa. 

From the last property and the property of the elliptic function of having two 
periods, it follows that the elliptic functions are the ‘imaginary classical solutions’ for 
all these potentials. This is seen from the expression for the classical oscillation period 

T = v-’(  E,) = 2/.~ p - ’  dx = 2 {2[ E - V(X)]// .L}-”~ dx 5% 5% 
( a  and b are two adjacent turning points). We use the last formula in all the cases, 
including when V(x) > E (imaginary solutions). 

To calculate the widths of the resonances in the potential type p we use the 
expression (Shepard 1983). 

T ( E , )  = 2hu(E,) exp(-2K1,) 

taking into consideration the symmetry of the potential. The value of KII  is 

KII  = h-’  lQb IpI dx. 

Then following Byrd and Friedman (1954), we obtain 

K I I =  ( - 2 E , / 3 m , h w ) [ ( 2 - m ) E ( K ) - 2 m , K ] .  

We change m c* m,  and insert the values of E,  calculated in the previous paragraph 
to obtain 

KII  = (2En/3mhw)[(l + m ) E ’ - 2 m K ’ ] .  

K ‘  and E’ are the complementary elliptic integrals of the first and the second kind 
respectively. 

The same results for A = 1 have been obtained (without using the varaible t )  by 
Shepard (1983). This author does not give numerical calculations in his work; our 
numerical values are given in the last section of this paper. 

We can calculate the period for this case, T=4K’/w.  The real period is 4Klw. 



892 A M Sanchez and J D Bejarano 

4. Double well potential 

In the calculation of energy levels in the potential type y if E < O  there is a potential 
barrier between two potential wells; we must take into account the splitting of degener- 
ate energy levels due to tunnelling. Then, the energy levels are 

Here ELo’ is the value obtained using the quantification rule only in a well of the 
potential. AE,, is the term of tunnelling between the two wells; this term is responsible 
for the splitting in energy for every double degenerate level. 

Using the same procedure to obtain the quantified levels as in P 2, we arrive at the 
following result: 

E ,  = ELo’*AE,. 

E Lo’ = (n + 3) hw3 m,{4[ ( m  - 2 )  E ( K ) + 2m1 K I}-’. 
For the expression of AE,,, we use the considerations of the preceding section. The 

results are 

A E ,  = ( h w / 2 K ’ )  e ~ p { ( - 4 E ~ ~ ’ / 3 m , h w ) [ ( 2 - m ) E ’ - m K ’ ] } .  

Here w,  A, B and E are related via the values given in table 1. Banerjee et a1 (1978) 
have made a similar study and our results are in very good agreement. For the numerical 
calculations these authors use another method. Comparisons are made in the next 
section. 

5. Comparisons with well known limits 

For the potential type a the case 
m =0 ,  B=O A = i p w ,  2 

is the limiting case corresponding to the harmonic oscillator. For m = 0 

sn (wt ;  0) =sen  wt, dn(wt; 0) = 1, T = 27710, E = px;w2/2 
(see Abramowitz and Stegun 1972) and from (2) one obtains the well known formula 
for the energy levels of the harmonic oscillator. 

The case 
m = m  1 - 2 ,  -1. A = 0, B = pw2/4xz = p w 4 / 8 x i  

is the limiting case corresponding to the quartic oscillator?. To compare with published 
results we restrict ourselves to the case B = 1.0 and we use, as did Galindo and Pascual 
(1978), the units h = 2 p  = 1. Then the energy levels are 

E, = {( n + $ ) 3 7 ~ [  K (  m = 9]-L}4/3.  

E,  = [(n+$)r1/241’(i+a)/r(T)] 1 4 / 3  

This result is identical with the usual 

where r is the Euler gamma function. The equality can be proved using (see the 
appendix) 

where B is the beta function. The energy levels are also in agreement with the results 
of Bender et a1 (1977). 

2 - ’ l 2 ~ ( ; )  = ( : ) B ( &  f) = (:)[r(f)r(f)]/r(t+f) 

t For a general review of the J W K B  method including the case of the quartic oscillator see Voros (1983).  
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For the type /3 the case 

m = 0 ,  m,  = 1, A = po2/2, B=O 

is once more the limiting case corresponding to the harmonic oscillator, with the same 
conclusions as those expressed above. 

Now we turn to the study of the numerical values of the energy levels. The well 
type a has been frequently studied (see the references of 4 1). It is usual to express 
the results in units of the fundamental level of the harmonic oscillator. Alternatively 
one can use the units h = 2p = 1. Our results for the first five energy levels are given 
in figure 1 for A = 1.0. We compare the J W K B  results in the lower order with values 
obtained with numerical integration methods (Oset and Salcedo 1984) and/or from 
the very extensive literature on the subject (see Q 1). The values for variable A can be 
calculated from the scaling relations if necessary. We can observe in figure 1 the good 
agreement between our calculations and more sophisticated methods, excluding the 
ground level, because it is well known that the JWKB approximation is worse the lower 
the energy value is, particularly for the ground energy level. 

% 

L 01 

W 

m 

B 

Figure 1. Energy levels of the oscillator V ( x )  = x2+ Ex4. The curves are our results for 
the energy levels. The crosses are values found by other authors (see references in 5 1). 

A note to add to the results is that the energy level values calculated by the JWKB 

approximation are below those calculated by other methods for every value of B due 
to the closeness of this potential compared with the harmonic oscillator potential, 
which is exact in the JWKB approximation. 

We have indicated in P 3 an analytic comparison of the equations for the potential 
type p. We can now compare with numerical values. We plot in figure 2 the first five 
values of the resonances, compared with those calculated by Drummond (1981) using 
perturbative methods. For some cases table 2 shows this comparison. We can observe 
in figure 2 and table 2 that the JWKB energy levels are above those calculated by 
Drummond. The reason is the expansion of the potential well in comparison with the 
harmonic oscillator potential. The values for the widths of the first five resonances 
are shown in figure 3 and table 3. The comparison has been made taking into 
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Figure 2. 'Resonances' of the oscillator V ( x )  = x2 - Bx4.  The full curves are our results 
for the energy levels. The crosses are Drummond's values (1981). The broken curve is the 
maximum potential value. 

consideration the relation (Shepard 1983) 

r( E , )  = 2 Im( E n ) .  

Im( E , )  is the imaginary part of the energy. The discrepancy in the widths is justified 
by the limitations of the J W K B  method: it is poor for low and deeply bound levels 
(Galindo and Pascual 1978), but the agreement is good in general, taking into account 
the low order used in the approximation. Therefore, the JWKB values are at first below 
Drummond's but finally it is observed that the opposite effect occurs. In conclusion, 
it must be an exact value obtained by the JWKB method for the resonance widths. This 
subject will be discussed for the case y. 

We now study the potential type y, taking tunnelling effects into consideration. 
The values of the energy levels and the comparison with the Banerjee and Bhatnagar 
(1978) and the Somorjai and Homing (1962) values are plotted in figure 4 for A = -1.0. 
The values of this figure are 

i.e. all the values are greater than zero because of the logarithmic representation, the 
potential minimum f B  having been added. Some results for common cases are given 
in table 4. We have already noted the important fact that the JWKB energy levels appear 
above the exact values whereas for large B ( A  = 1 for example) the JWKB values are 
below the exact ones. This effect occurs because those energy levels between the 
maximum and minimum of the potential behave as potential type p due to transmission 
across the barrier, but above the maximum the behaviour is like the simple well 
(potential type a). Then the graphics lines of exact and approximate values must 
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1 k ' ' "  I '  ' ' i "  ' ' I  ' i '  I '  

3 
I B I  

Figure 3. Widths of the resonances of the oscillator V ( x )  = x2 - Bx'. The curves are our 
results. The crosses are Drummond's values (1981). 

intersect each other. This means that the approximate energy levels calculated by the 
JWKB approximation are exact even in the lower order of this approximation. It is an 
unusual phenomenon. In table 4, two examples can be seen: for B = 0.130, the level 
E,, or for B = 0.75, the level E , ;  they are always odd levels. The effect is complete 

I I 

\ 

I 
\ \ I  1 1 1 I I / I I I  

lo-' 1 10 102 
B 

Figure 4. Energy levels of the oscillator V ( x )  = - x 2 +  Bx', The full curves are our  results 
for the energy levels ( E L  = E ,  + : E ) .  The crosses are the Somorjai and Hornig (1961) and 
Banerjee and Bhatnagar (1978) values. The broken line is the value of the maximum 
potential ( V,,, = i B ) .  
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also for even levels, but it is not observed because it occurs in the neighbourhood of 
the maximum, and in this zone the J W K B  energy levels are very inexact because of the 
large tunnelling effect. For the potential type y we made a comparison with the values 
of the energy levels when B = 1.0 in figure 5 .  This is made with the values obtained 
by Balsa et a1 (1983) using variational methods. In this figure the values are 

EL = E,  +:A2 

for the same reason as before, where $A2 is the depth of the potential. 
We observe in the last two figures that when the transparency of the barrier between 

the two wells is large, the JWKB approximation is bad, but this is due to the low order 
of approximation used. 

Table 5. Comparison of the splitting of the energy levels with the values obtained with 
the Oset and Salcedo (1983) program for A = -1 and several values of B ( B  > 0). The 
index indicates the energy levels taken into consideration. 

2AEO.I 2 4 3  

Oset and Oset and 
B W K B  Salcedo W K B  Salcedo 

0.010 
0.050 
0.100 
0.50 
1 .oo 
5.0 

10 
100 

1000 

0.000 0.000 
0.002 0.002 
1.163 0.112 
1.698 1.450 
2.425 2.176 
4.673 4.363 
6.001 5.548 

13.290 12.598 
28.758 27.339 

O.Oo0 0.000 
0.185 0.102 
1.23 1 1.034 
2.938 2.926 
3.885 3.874 
6.995 6.979 
8.898 8.879 

19.402 19.376 
41.908 41.859 
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In table 5 ,  we present the comparison of the splitting of the energy levels AE, with 
the values obtained with the Oset and Salcedo (1984) program for A = -1.0 and 
several different values of B. 

6. Conclusions 

We have studied the energy levels of the anharmonic oscillator with all the signs of 
the coefficients in the symmetrical potential in the J W K B  approximation. We have 
obtained analytic formulae for the different cases, and the agreement with the previously 
calculated values is good if we take into consideration that our approximation is to 
lower order. We have found several examples of the very rare exact values known in 
the literature about the subject. 
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Appendix 

The complete elliptic integral of the first kind is usually defined (Abramowitz and 
Stegun 1972) 

K(m)= [(l-  t ')( l-  mt2)]-L'2 dt, /mi < 1. lo' 
The hypergeometric function is defined as the solution of the Gauss hypergeometric 

equation (Luke 1969, Lebedev 1972, Carlson 1977, Exton 1978) 

T(c) f T ( a + n ) r ( b + n ) x "  - 
T ( a ) T ( b )  n = O  T ( c + n )  n !  

F (  a, b, C ,  X )  = 

where T is the Euler gamma function 

(Rex>O) .  

The beta function is 

The beta function is also given by the improper integral 

B ( a ,  b )  = P - ' ( l  - t ) b - '  dt, (Re a > 0, Re b > 0). lo1 
In order to study the relations between these functions, we calculate the following 
integral in two different ways. 
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First method 

lo' (1 - y4)-1'2 dy = lo' [ (1 + y2)( 1 - y2)]-"* djs = 2 - ' / * K  (4) 

using Byrd and Friedman (1954). 
Second method: with the change of variables y4 = t ,  we obtain 

according to the definition of the beta function. Therefore the first relation found 
between the elliptic integral of the first kind and the beta function is 

2 3 / 2 ~ ( 9  = B($ ,  ;) 

used in 5 5 .  

function 
The well known relation between the elliptic integral and the hypergeometric 

K ( m )  = ( T / 2 ) a 9  4, 1, m) Iml< l  
gives also 
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