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Abstract. We study in the JWKB approximation the energy levels of the symmetric anhar-
monic oscillators V(x) = Ax?+ Bx* for different signs and values of A and B. Comparisons
are made with published results for specific cases and with numerical calculations. We
give an additional example of exact value, to add to the very rare catalogue of known
examples.

1. Introduction

In a series of papers we have studied complete analytical solutions of different
anharmonic oscillators. Diaz Bejarano et al (1982) have considered classical oscillators
in potentials of the form V(x) = Ax*+ Bx*, the more difficult case of the asymmetrical
potential V(x)= Ax’+ Bx’ has been considered by Diaz Bejarano et al (1985). Finally
we show the relation between the relativistic oscillators and the non-linear symmetrical
oscillator (Diaz Bejarano and Martin Sdnchez 1983). The intrinsic non-linear properties
of the relativistic oscillator make a general study of the anharmonic symmetrical
oscillator in quantum mechanics interesting. These oscillators are also important in
chemistry and have many applicationst. The case with A=+1 and B positive has
been treated by many different methods (Bazley and Fox 1961, Reid 1965, Bender and
Wu 1969, Laane 1970, Loefiel et al 1969, Pascual 1969, Biswas et al 1971, Mathews
and Eswaran 1972, Banerjee 1976, Hioe and Montroll 1975, Banerjee et al 1978, Hioe
et al 1978, Radmore 1980, Mathews et al 1981, Cizek and Vrscay 1982, Hirsbrunner
1982, Ferndndez and Castro 1983, Ferndndez et al 1983, Flessas 1983, Flessas et al
1983, Bhattacharya et al 1984, Marziani 1984).

2. Eigenvalues from the jwks approximation for the anharmonic symmetrical
oscillators

For the calculation of the energy levels we use the Bohr-Sommerfeld rule modified
by the jwKB method, in the lowest order (Galindo and Pascual 1978) i.e.

‘§P(x)dx=(n+%)h- (1)
Taking into consideration the symmetry of the problem and changing to the more

T A list of references (320) for previous work can be found, for example in Killingbeck (1977). More
references can be found in Martin Sanchez (1983).
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convenient ! variable (Bradbury 1968) we transform (1) into

T/4
4u J 221y dt = (n+Y)h. (2)

0

We give in table 1 the corresponding classical periodic solutions for general
coefficients A and B in the potential

V(x)= Ax*+ Bx*.

In this table, m is the parameter of the elliptic functions and m, is the complementary
parameter (Abramowitz and Stegun 1972); x, is the maximum amplitude for the
oscillations and X, is the maximum velocity.

We study here the following cases: (a) A>0, B>0; (B) A>0, B<0; (y) A<O,
B>0. The type (8) A<0, B<0 has no bound energy levels.

For the type a there are various special cases. For m =0, B =0 we have the limit
corresponding to the harmonic oscillator. The solutions cn and sd are the well known
equivalent solutions cos and sin (Abramowitz and Stegun 1972). For m =3, A=0and
we have the limit of the quartic oscillator, to be considered in § 5. A= B =0 is the
free particle and is not studied here.

The energy levels for the type B must lie below the potential maximum; they are
resonances because there is tunnelling through the barriers.

For the type v when E =0 the four classical solutions (cn, sd, dn and nd) are
equivalent and m=1.

Some aspects and formulae for the case with A =+1 and B negative are also known
(Biswas et al 1973, Drummond 1981). Numerical solutions for special values of A
negative and B positive are given by Somorjai and Hornig (1962), Caswell (1979),
Dias de Deus (1982) and Balsa et al (1983). From the enormous literature on the
subject we do not know of any general discussions of the problem. In this paper we
intend to make this general study. The results have been checked with results previously
published (mentioned above) and/or with calculations made with numerical methods
(Oset and Salcedo 1984).

For the Hamiltonian

H=(P*/2u)+AX?>+ BX* (3)

u is the mass of the oscillator and P and X momentum and position. Diaz Bejarano
et al (1983) gave the classical solutions, needed for the application of the swkB method,
obtained from the applications of Newton’s law, i.e. with coefficients in the expression
for the force.

We also give in table 1 the classical total energy E of the particle (kinetic+ potential).
The total energy of the particle is then, according to table 1, for type «

E = Ax}+ Bx§= m,pw’xi/2. (4)

From (3) and (2) we obtain
T/4
4/.Lx§w2-” sn’ wtdn® wr dt = (n+)h (5)
0
The period of the cn wt is 4K /w, where K is the complete elliptic integral of the first
kind (Abramowitz and Stegun 1972). The integral (5) and similar integrals for the
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other types are tabulated in Byrd and Friedman (1954). After some simple algebra
one obtains for the energy level n in the potential type o

E,=(n+)ho3mm{8[(2m—-1)E(K)+m K]}’ (6)

where E(K) is the complete elliptic integral of the second kind.

For initial conditions of type II, the classical equations of motion for the same
potential is given in table 1 and the total energy for these initial conditions can also
be seen in this table. The JWKB quantisation condition can now be applied, and after
minor algebra the same value for E, as before is obtained. This result is the expected
one for equivalent solutions of the same potential. To be able to calculate the energy
levels from (6) one needs a relation between w, m, A and B that can be obtained from
the values given in table 1.

Similar formulae can be found for all the potentials. Then, making the same
operations as indicated above we obtain for the potential type B, the energy

E,=(n+Hhe3m{8[(1+m)E(K)—m K)]}™!

but, in these cases, the energies given by the preceding formula are not energy levels;
they are only resonances because a particle in the well of potential 8 can traverse
the limiting barriers by tunnelling. We discuss this effect in the next section; there,
we calculate also the resonance widths for the corresponding energy.

The positive energy levels of potential y are the same as for case «, but the restriction
on the parameter of elliptic function is now < m <1, because the A value must be
in agreement with the values of w and E in table 1. For the calculations of the negative
energy levels of type ¥ it is necessary to calculate the tunnelling effect of the intermediate
barrier between the two potential wells. This effect will be considered in the next section.

When we calculate the negative energy levels we must check the connection with
the positive ones. This will be made in the last section giving the numerical values for
both positive and negative energy levels.

We need only calculate the energy levels with A =1 whatever B is, or with B=1
whatever A is, because we can use the scaling relations satisfied by the exact eigenvalues

E.(A, B)=A"?E,(1, BA™*?)
E.(A, B)=B'’E,(AB™1)
or the relation obtained with the two preceding

AI/ZE,,(I, BA—!/Z) — Bl/sEn(AB—2/3’ 1).

3. Potential barriers

In the previous calculations it has not been necessary to find the relations between the
parameter of the elliptic functions and the turning points. Now, for the calculus of
barrier penetration we calculate the solutions of the energy conservation equation

V(x)=E. )
The roots of this equation are the turning points. Another relation is given in table 1
for the total energy. Comparing the two relations for the m value we have the equality
m=a*/(a*+|al?)
where a and a are the roots of (7). The other roots of this equation are —a and a*
taking into consideration the symmetry of the potential. The complementary parameter
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my =lal’/(a’+l|al?).

Similarly for the other potentials (8 and y) we obtain the following relations.
For type B8

m=a’/b?, m,=1-a?/b>.

For type y and negative energies (for positive energies it has the same relation as
potential a)

m=1-a?/b* m, = a*/ b

The roots of equation (7) in both cases are a, —a, b and —b. The similarity
between the two types is evident and it will be used in the following. Another important
property of the potential 8 and v is that V(x) in the type 8 is —V(x) in the type ¥y
and vice versa.

From the last property and the property of the eliliptic function of having two
periods, it follows that the elliptic functions are the ‘imaginary classical solutions’ for
all these potentials. This is seen from the expression for the classical oscillation period

b b
T=V_1(En)=2MJ p“dx=2_[ {2[E - V(x))/p} " dx

(a and b are two adjacent turning points). We use the last formula in all the cases,
including when V(x)> E (imaginary solutions).

To calculate the widths of the resonances in the potential type B we use the
expression (Shepard 1983).

I(E,)=2hv(E,) exp(-2Ky)

taking into consideration the symmetry of the potential. The value of Ky is

b
an h—l j’ |p| dx.

a

Then following Byrd and Friedman (1954), we obtain
Ky=(-2E,/3mhw)[(2-m)E(K)-2m K].

We change m <> m, and insert the values of E, calculated in the previous paragraph
to obtain

Ky =(2E,/3mhw)[(1+m)E' —2mK'].

K' and E' are the complementary elliptic integrals of the first and the second kind
respectively.

The same resuits for A=1 have been obtained (without using the varaible ¢) by
Shepard (1983). This author does not give numerical calculations in his work; our
numerical values are given in the last section of this paper.

We can calculate the period for this case, T=4K'/w. The real period is 4K/ w.
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4. Double well potential

In the calculation of energy levels in the potential type y if E <0 there is a potential
barrier between two potential wells; we must take into account the splitting of degener-
ate energy levels due to tunnelling. Then, the energy levels are

E,=E“+AE,.
Here E'Y is the value obtained using the quantification rule only in a well of the
potential. AE, is the term of tunnelling between the two wells; this term is responsible
for the splitting in energy for every double degenerate level.

Using the same procedure to obtain the quantified levels as in § 2, we arrive at the
following result:

E¥ = (n+ho3m{4[(m-2)E(K)+2m K]},

For the expression of AE,, we use the considerations of the preceding section. The
results are

AE, = (hw/2K') exp{(-4E/3m hw)[(2—m)E' -~ mK']}.

Here w, A, B and E are related via the values given in table 1. Banerjee et al (1978)
have made a similar study and our results are in very good agreement. For the numerical
calculations these authors use another method. Comparisons are made in the next
section.

5. Comparisons with well known limits

For the potential type « the case

m=0, A=iuw? B=0
is the limiting case corresponding to the harmonic oscillator. For m =0
sn{wt; 0) = sen wt, dn(wt; 0)=1, T=27/w, E = uxiw?/2

{see Abramowitz and Stegun 1972) and from (2) one obtains the well known formula
for the energy levels of the harmonic oscillator.
The case

m=m, =3 A=0, B=pw’/4xi= pw'/8x}

is the limiting case corresponding to the quartic oscillatori. To compare with published
results we restrict ourselves to the case B =1.0 and we use, as did Galindo and Pascual
(1978), the units A =2u = 1. Then the energy levels are

E,={(n+)37[K(m=3]""}*".
This result is identical with the usual
E,=[(n+3)7"24T 3+ /TN

where I' is the Euler gamma function. The equality can be proved using (see the
appendix)

272K (3) =BG, ) = AIIGHT@Y/TE+)
where B is the beta function. The energy levels are also in agreement with the results
of Bender et al (1977).

T For a general review of the JWKB method including the case of the quartic oscillator see Voros (1983).
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For the type B the case
m=0, my =1, A=pw?/2, B=0

is once more the limiting case corresponding to the harmonic oscillator, with the same
conclusions as those expressed above.

Now we turn to the study of the numerical values of the energy levels. The well
type @ has been frequently studied (see the references of § 1). It is usual to express
the results in units of the fundamental level of the harmonic oscillator. Alternatively
one can use the units # =2u =1. Our results for the first five energy levels are given
in figure 1 for A=1.0. We compare the ywks results in the lower order with values
obtained with numerical integration methods (Oset and Salcedo 1984) and/or from
the very extensive literature on the subject (see § 1). The values for variable A can be
calculated from the scaling relations if necessary. We can observe in figure 1 the good
agreement between our calculations and more sophisticated methods, excluding the
ground level, because it is well known that the JwkB approximation is worse the lower
the energy value is, particularly for the ground energy level.

100 T T T T T 1T TTI777 1 71T

T T 11717y

Energy

AL RAAS

T

01 [T B I R Tl Lol Lol A.J
107 107" 1 10 107 1073
B

Figure 1. Energy levels of the oscillator V(x)=x?+ Bx*. The curves are our results for
the energy levels. The crosses are values found by other authors (see references in § 1).

A note to add to the results is that the energy level values calculated by the swks
approximation are below those calculated by other methods for every value of B due
to the closeness of this potential compared with the harmonic oscillator potential,
which is exact in the swkB approximation.

We have indicated in § 3 an analytic comparison of the equations for the potential
type 8. We can now compare with numerical values. We plot in figure 2 the first five
values of the resonances, compared with those calculated by Drummond (1981) using
perturbative methods. For some cases table 2 shows this comparison. We can observe
in figure 2 and table 2 that the JwkB energy levels are above those calculated by
Drummond. The reason is the expansion of the potential well in comparison with the
harmonic oscillator potential. The values for the widths of the first five resonances
are shown in figure 3 and table 3. The comparison has been made taking into
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Figure 2. ‘Resonances’ of the oscillator V(x)=x?— Bx*. The full curves are our results
for the energy levels. The crosses are Drummond’s values (1981). The broken curve is the
maximum potential value.

consideration the relation (Shepard 1983)
I'(E,)=21Im(E,).

Im(E,) is the imaginary part of the energy. The discrepancy in the widths is justified
by the limitations of the ywks method: it is poor for low and deeply bound levels
(Galindo and Pascual 1978), but the agreement is good in general, taking into account
the low order used in the approximation. Therefore, the JwkB values are at first below
Drummond’s but finally it is observed that the opposite effect occurs. In conclusion,
it must be an exact value obtained by the ywkB method for the resonance widths. This
subject will be discussed for the case ¥.

We now study the potential type v, taking tunnelling effects into consideration.
The values of the energy levels and the comparison with the Banerjee and Bhatnagar
(1978) and the Somorjai and Horning (1962) values are plotted in figure 4 for A = —1.0.
The values of this figure are

E'=E,+iB

i.e. all the values are greater than zero because of the logarithmic representation, the
potential minimum ;B having been added. Some results for common cases are given
in table 4. We have already noted the important fact that the JwkB energy levels appear
above the exact values whereas for large B (A =1 for example) the JwkB values are
below the exact ones. This effect occurs because those energy levels between the
maximum and minimum of the potential behave as potential type 8 due to transmission
across the barrier, but above the maximum the behaviour is like the simple well
(potential type a). Then the graphics lines of exact and approximate values must
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Figure 3. Widths of the resonances of the oscillator V(x)= x?— Bx*. The curves are our
results. The crosses are Drummond’s values (1981).

intersect each other. This means that the approximate energy levels calculated by the
JWKB approximation are exact even in the lower order of this approximation. It is an
unusual phenomenon. In table 4, two examples can be seen: for B =0.130, the level
E,, or for B=0.75, the level E,; they are always odd levels. The effect is complete

107
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Figure 4. Energy levels of the oscillator V(x)

10 10°

—x%+ Bx* The full curves are our results

for the energy levels (E’, = E, +4B). The crosses are the Somorjai and Hornig (1961) and

Banerjee and Bhatnagar (1978) values. The broken line is the value of the maximum
potential (V. =1B).
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Anharmonic symmetrical oscillators

also for even levels, but it is not observed because it occurs in the neighbourhood of
the maximum, and in this zone the JwkB energy levels are very inexact because of the
large tunnelling effect. For the potential type y we made a comparison with the values
of the energy levels when B =1.0 in figure 5. This is made with the values obtained

by Balsa et al (1983) using variational methods. In this figure the values are

E,=E,+3;A’

for the same reason as before, where $A” is the depth of the potential.

We observe in the last two figures that when the transparency of the barrier between
the two wells is large, the JwkB approximation is bad, but this is due to the low order

of approximation used.
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Figure 5. Energy levels of the oscillator V(x)=—Ax2+x*. The full curves are our results
for the energy levels (E', = E,+ A%/4). The crosses are the Balsa et al (1983) values. The
broken line is the value of the potential maximum (V,_,, = A%/4).

Table 5. Comparison of the splitting of the energy levels with the values obtained with
the Oset and Salcedo (1983) program for A= -1 and several values of B(B>0). The

10"

1
fAl

index indicates the energy levels taken into consideration.

10?

2AE, 2AE; ;s
Oset and Oset and
B WKB Salcedo WKB Salcedo
0.010 0.000 0.000 0.000 0.000
0.050 0.002 0.002 0.185 0.102
0.100 1.163 0.112 1.231 1.034
0.50 1.698 1.450 2938 2.926
1.00 2.425 2.176 3.885 3.874
5.0 4.673 4.363 6.995 6.979
10 6.001 5.548 8.898 8.879
100 13.290 12.598 19.402 19.376
1000 28.758 27.339 41.908 41.859
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In table 5, we present the comparison of the splitting of the energy levels AE, with
the values obtained with the Oset and Saicedo (1984) program for A=-1.0 and
several different values of B.

6. Conclusions

We have studied the energy levels of the anharmonic oscillator with all the signs of
the coefficients in the symmetrical potential in the JwkB approximation. We have
obtained analytic formulae for the different cases, and the agreement with the previously
calculated values is good if we take into consideration that our approximation is to
lower order. We have found several examples of the very rare exact values known in
the literature about the subject.
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Appendix

The complete elliptic integral of the first kind is usually defined (Abramowitz and
Stegun 1972)

K(m)=j (-1 -m)] V2 dy, im|<1.

The hypergeometric function is defined as the solution of the Gauss hypergeometric
equation (Luke 1969, Lebedev 1972, Carlson 1977, Exton 1978)

I'(a+n)I'(b+n) x_"
) I'(c+n) n!

18

T
F(a, b, ¢, x) _F(a)F(b) p

where I' is the Euler gamma function
F(x)=J- e dt, (Re x>0).
0

The beta function is
B(a, b)=T(a)T'(b)/T(a+b), (Rea>0,Re b>0).

The beta function is also given by the improper integral

1

B(a, b)='[ (1= 12" dy, (Re a>0,Re b>0).

0

In order to study the relations between these functions, we calculate the following
integral in two different ways.
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First method
1 1
j (1—y4)_‘/2dy='[ [A+y)(1-y)]) 2 dy=2""2K(})
4] 0

using Byrd and Friedman (1954).
Second method: with the change of variables y*=t, we obtain

1

1 1
J‘ (1—y4)_‘/2dy=%'[ t"3/4(1—t)"/2dt=%J (1= de =3B, 3
Q

0 0

according to the definition of the beta function. Therefore the first relation found
between the elliptic integral of the first kind and the beta function is

2K (3) = B}
used in § 5.

The well known relation between the elliptic integral and the hypergeometric
function

K(m)=(m/2)F(3,3,1, m) Im|<1
gives also

2?K(5)=2""7F(3,3,1,3) = BG, 1)
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